<html><head><meta name="color-scheme" content="light dark"></head><body><pre style="word-wrap: break-word; white-space: pre-wrap;">from datetime import (
    datetime,
    timedelta,
)
import inspect

import numpy as np
import pytest

from pandas._libs.tslibs.timezones import dateutil_gettz as gettz
from pandas.compat import (
    IS64,
    is_platform_windows,
)
from pandas.compat.numpy import np_version_gt2
import pandas.util._test_decorators as td

import pandas as pd
from pandas import (
    Categorical,
    CategoricalIndex,
    DataFrame,
    Index,
    MultiIndex,
    Series,
    date_range,
    isna,
)
import pandas._testing as tm
from pandas.api.types import CategoricalDtype


class TestReindexSetIndex:
    # Tests that check both reindex and set_index

    def test_dti_set_index_reindex_datetimeindex(self):
        # GH#6631
        df = DataFrame(np.random.default_rng(2).random(6))
        idx1 = date_range("2011/01/01", periods=6, freq="ME", tz="US/Eastern")
        idx2 = date_range("2013", periods=6, freq="YE", tz="Asia/Tokyo")

        df = df.set_index(idx1)
        tm.assert_index_equal(df.index, idx1)
        df = df.reindex(idx2)
        tm.assert_index_equal(df.index, idx2)

    def test_dti_set_index_reindex_freq_with_tz(self):
        # GH#11314 with tz
        index = date_range(
            datetime(2015, 10, 1), datetime(2015, 10, 1, 23), freq="h", tz="US/Eastern"
        )
        df = DataFrame(
            np.random.default_rng(2).standard_normal((24, 1)),
            columns=["a"],
            index=index,
        )
        new_index = date_range(
            datetime(2015, 10, 2), datetime(2015, 10, 2, 23), freq="h", tz="US/Eastern"
        )

        result = df.set_index(new_index)
        assert result.index.freq == index.freq

    def test_set_reset_index_intervalindex(self):
        df = DataFrame({"A": range(10)})
        ser = pd.cut(df.A, 5)
        df["B"] = ser
        df = df.set_index("B")

        df = df.reset_index()

    def test_setitem_reset_index_dtypes(self):
        # GH 22060
        df = DataFrame(columns=["a", "b", "c"]).astype(
            {"a": "datetime64[ns]", "b": np.int64, "c": np.float64}
        )
        df1 = df.set_index(["a"])
        df1["d"] = []
        result = df1.reset_index()
        expected = DataFrame(columns=["a", "b", "c", "d"], index=range(0)).astype(
            {"a": "datetime64[ns]", "b": np.int64, "c": np.float64, "d": np.float64}
        )
        tm.assert_frame_equal(result, expected)

        df2 = df.set_index(["a", "b"])
        df2["d"] = []
        result = df2.reset_index()
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "timezone, year, month, day, hour",
        [["America/Chicago", 2013, 11, 3, 1], ["America/Santiago", 2021, 4, 3, 23]],
    )
    def test_reindex_timestamp_with_fold(self, timezone, year, month, day, hour):
        # see gh-40817
        test_timezone = gettz(timezone)
        transition_1 = pd.Timestamp(
            year=year,
            month=month,
            day=day,
            hour=hour,
            minute=0,
            fold=0,
            tzinfo=test_timezone,
        )
        transition_2 = pd.Timestamp(
            year=year,
            month=month,
            day=day,
            hour=hour,
            minute=0,
            fold=1,
            tzinfo=test_timezone,
        )
        df = (
            DataFrame({"index": [transition_1, transition_2], "vals": ["a", "b"]})
            .set_index("index")
            .reindex(["1", "2"])
        )
        exp = DataFrame({"index": ["1", "2"], "vals": [np.nan, np.nan]}).set_index(
            "index"
        )
        exp = exp.astype(df.vals.dtype)
        tm.assert_frame_equal(
            df,
            exp,
        )


class TestDataFrameSelectReindex:
    # These are specific reindex-based tests; other indexing tests should go in
    # test_indexing

    @pytest.mark.xfail(
        not IS64 or (is_platform_windows() and not np_version_gt2),
        reason="Passes int32 values to DatetimeArray in make_na_array on "
        "windows, 32bit linux builds",
    )
    @td.skip_array_manager_not_yet_implemented
    def test_reindex_tzaware_fill_value(self):
        # GH#52586
        df = DataFrame([[1]])

        ts = pd.Timestamp("2023-04-10 17:32", tz="US/Pacific")
        res = df.reindex([0, 1], axis=1, fill_value=ts)
        assert res.dtypes[1] == pd.DatetimeTZDtype(unit="s", tz="US/Pacific")
        expected = DataFrame({0: [1], 1: [ts]})
        expected[1] = expected[1].astype(res.dtypes[1])
        tm.assert_frame_equal(res, expected)

        per = ts.tz_localize(None).to_period("s")
        res = df.reindex([0, 1], axis=1, fill_value=per)
        assert res.dtypes[1] == pd.PeriodDtype("s")
        expected = DataFrame({0: [1], 1: [per]})
        tm.assert_frame_equal(res, expected)

        interval = pd.Interval(ts, ts + pd.Timedelta(seconds=1))
        res = df.reindex([0, 1], axis=1, fill_value=interval)
        assert res.dtypes[1] == pd.IntervalDtype("datetime64[s, US/Pacific]", "right")
        expected = DataFrame({0: [1], 1: [interval]})
        expected[1] = expected[1].astype(res.dtypes[1])
        tm.assert_frame_equal(res, expected)

    def test_reindex_copies(self):
        # based on asv time_reindex_axis1
        N = 10
        df = DataFrame(np.random.default_rng(2).standard_normal((N * 10, N)))
        cols = np.arange(N)
        np.random.default_rng(2).shuffle(cols)

        result = df.reindex(columns=cols, copy=True)
        assert not np.shares_memory(result[0]._values, df[0]._values)

        # pass both columns and index
        result2 = df.reindex(columns=cols, index=df.index, copy=True)
        assert not np.shares_memory(result2[0]._values, df[0]._values)

    def test_reindex_copies_ea(self, using_copy_on_write):
        # https://github.com/pandas-dev/pandas/pull/51197
        # also ensure to honor copy keyword for ExtensionDtypes
        N = 10
        df = DataFrame(
            np.random.default_rng(2).standard_normal((N * 10, N)), dtype="Float64"
        )
        cols = np.arange(N)
        np.random.default_rng(2).shuffle(cols)

        result = df.reindex(columns=cols, copy=True)
        if using_copy_on_write:
            assert np.shares_memory(result[0].array._data, df[0].array._data)
        else:
            assert not np.shares_memory(result[0].array._data, df[0].array._data)

        # pass both columns and index
        result2 = df.reindex(columns=cols, index=df.index, copy=True)
        if using_copy_on_write:
            assert np.shares_memory(result2[0].array._data, df[0].array._data)
        else:
            assert not np.shares_memory(result2[0].array._data, df[0].array._data)

    @td.skip_array_manager_not_yet_implemented
    def test_reindex_date_fill_value(self):
        # passing date to dt64 is deprecated; enforced in 2.0 to cast to object
        arr = date_range("2016-01-01", periods=6).values.reshape(3, 2)
        df = DataFrame(arr, columns=["A", "B"], index=range(3))

        ts = df.iloc[0, 0]
        fv = ts.date()

        res = df.reindex(index=range(4), columns=["A", "B", "C"], fill_value=fv)

        expected = DataFrame(
            {"A": df["A"].tolist() + [fv], "B": df["B"].tolist() + [fv], "C": [fv] * 4},
            dtype=object,
        )
        tm.assert_frame_equal(res, expected)

        # only reindexing rows
        res = df.reindex(index=range(4), fill_value=fv)
        tm.assert_frame_equal(res, expected[["A", "B"]])

        # same with a datetime-castable str
        res = df.reindex(
            index=range(4), columns=["A", "B", "C"], fill_value="2016-01-01"
        )
        expected = DataFrame(
            {"A": df["A"].tolist() + [ts], "B": df["B"].tolist() + [ts], "C": [ts] * 4},
        )
        tm.assert_frame_equal(res, expected)

    def test_reindex_with_multi_index(self):
        # https://github.com/pandas-dev/pandas/issues/29896
        # tests for reindexing a multi-indexed DataFrame with a new MultiIndex
        #
        # confirms that we can reindex a multi-indexed DataFrame with a new
        # MultiIndex object correctly when using no filling, backfilling, and
        # padding
        #
        # The DataFrame, `df`, used in this test is:
        #       c
        #  a b
        # -1 0  A
        #    1  B
        #    2  C
        #    3  D
        #    4  E
        #    5  F
        #    6  G
        #  0 0  A
        #    1  B
        #    2  C
        #    3  D
        #    4  E
        #    5  F
        #    6  G
        #  1 0  A
        #    1  B
        #    2  C
        #    3  D
        #    4  E
        #    5  F
        #    6  G
        #
        # and the other MultiIndex, `new_multi_index`, is:
        # 0: 0 0.5
        # 1:   2.0
        # 2:   5.0
        # 3:   5.8
        df = DataFrame(
            {
                "a": [-1] * 7 + [0] * 7 + [1] * 7,
                "b": list(range(7)) * 3,
                "c": ["A", "B", "C", "D", "E", "F", "G"] * 3,
            }
        ).set_index(["a", "b"])
        new_index = [0.5, 2.0, 5.0, 5.8]
        new_multi_index = MultiIndex.from_product([[0], new_index], names=["a", "b"])

        # reindexing w/o a `method` value
        reindexed = df.reindex(new_multi_index)
        expected = DataFrame(
            {"a": [0] * 4, "b": new_index, "c": [np.nan, "C", "F", np.nan]}
        ).set_index(["a", "b"])
        tm.assert_frame_equal(expected, reindexed)

        # reindexing with backfilling
        expected = DataFrame(
            {"a": [0] * 4, "b": new_index, "c": ["B", "C", "F", "G"]}
        ).set_index(["a", "b"])
        reindexed_with_backfilling = df.reindex(new_multi_index, method="bfill")
        tm.assert_frame_equal(expected, reindexed_with_backfilling)

        reindexed_with_backfilling = df.reindex(new_multi_index, method="backfill")
        tm.assert_frame_equal(expected, reindexed_with_backfilling)

        # reindexing with padding
        expected = DataFrame(
            {"a": [0] * 4, "b": new_index, "c": ["A", "C", "F", "F"]}
        ).set_index(["a", "b"])
        reindexed_with_padding = df.reindex(new_multi_index, method="pad")
        tm.assert_frame_equal(expected, reindexed_with_padding)

        reindexed_with_padding = df.reindex(new_multi_index, method="ffill")
        tm.assert_frame_equal(expected, reindexed_with_padding)

    @pytest.mark.parametrize(
        "method,expected_values",
        [
            ("nearest", [0, 1, 1, 2]),
            ("pad", [np.nan, 0, 1, 1]),
            ("backfill", [0, 1, 2, 2]),
        ],
    )
    def test_reindex_methods(self, method, expected_values):
        df = DataFrame({"x": list(range(5))})
        target = np.array([-0.1, 0.9, 1.1, 1.5])

        expected = DataFrame({"x": expected_values}, index=target)
        actual = df.reindex(target, method=method)
        tm.assert_frame_equal(expected, actual)

        actual = df.reindex(target, method=method, tolerance=1)
        tm.assert_frame_equal(expected, actual)
        actual = df.reindex(target, method=method, tolerance=[1, 1, 1, 1])
        tm.assert_frame_equal(expected, actual)

        e2 = expected[::-1]
        actual = df.reindex(target[::-1], method=method)
        tm.assert_frame_equal(e2, actual)

        new_order = [3, 0, 2, 1]
        e2 = expected.iloc[new_order]
        actual = df.reindex(target[new_order], method=method)
        tm.assert_frame_equal(e2, actual)

        switched_method = (
            "pad" if method == "backfill" else "backfill" if method == "pad" else method
        )
        actual = df[::-1].reindex(target, method=switched_method)
        tm.assert_frame_equal(expected, actual)

    def test_reindex_methods_nearest_special(self):
        df = DataFrame({"x": list(range(5))})
        target = np.array([-0.1, 0.9, 1.1, 1.5])

        expected = DataFrame({"x": [0, 1, 1, np.nan]}, index=target)
        actual = df.reindex(target, method="nearest", tolerance=0.2)
        tm.assert_frame_equal(expected, actual)

        expected = DataFrame({"x": [0, np.nan, 1, np.nan]}, index=target)
        actual = df.reindex(target, method="nearest", tolerance=[0.5, 0.01, 0.4, 0.1])
        tm.assert_frame_equal(expected, actual)

    def test_reindex_nearest_tz(self, tz_aware_fixture):
        # GH26683
        tz = tz_aware_fixture
        idx = date_range("2019-01-01", periods=5, tz=tz)
        df = DataFrame({"x": list(range(5))}, index=idx)

        expected = df.head(3)
        actual = df.reindex(idx[:3], method="nearest")
        tm.assert_frame_equal(expected, actual)

    def test_reindex_nearest_tz_empty_frame(self):
        # https://github.com/pandas-dev/pandas/issues/31964
        dti = pd.DatetimeIndex(["2016-06-26 14:27:26+00:00"])
        df = DataFrame(index=pd.DatetimeIndex(["2016-07-04 14:00:59+00:00"]))
        expected = DataFrame(index=dti)
        result = df.reindex(dti, method="nearest")
        tm.assert_frame_equal(result, expected)

    def test_reindex_frame_add_nat(self):
        rng = date_range("1/1/2000 00:00:00", periods=10, freq="10s")
        df = DataFrame(
            {"A": np.random.default_rng(2).standard_normal(len(rng)), "B": rng}
        )

        result = df.reindex(range(15))
        assert np.issubdtype(result["B"].dtype, np.dtype("M8[ns]"))

        mask = isna(result)["B"]
        assert mask[-5:].all()
        assert not mask[:-5].any()

    @pytest.mark.parametrize(
        "method, exp_values",
        [("ffill", [0, 1, 2, 3]), ("bfill", [1.0, 2.0, 3.0, np.nan])],
    )
    def test_reindex_frame_tz_ffill_bfill(self, frame_or_series, method, exp_values):
        # GH#38566
        obj = frame_or_series(
            [0, 1, 2, 3],
            index=date_range("2020-01-01 00:00:00", periods=4, freq="h", tz="UTC"),
        )
        new_index = date_range("2020-01-01 00:01:00", periods=4, freq="h", tz="UTC")
        result = obj.reindex(new_index, method=method, tolerance=pd.Timedelta("1 hour"))
        expected = frame_or_series(exp_values, index=new_index)
        tm.assert_equal(result, expected)

    def test_reindex_limit(self):
        # GH 28631
        data = [["A", "A", "A"], ["B", "B", "B"], ["C", "C", "C"], ["D", "D", "D"]]
        exp_data = [
            ["A", "A", "A"],
            ["B", "B", "B"],
            ["C", "C", "C"],
            ["D", "D", "D"],
            ["D", "D", "D"],
            [np.nan, np.nan, np.nan],
        ]
        df = DataFrame(data)
        result = df.reindex([0, 1, 2, 3, 4, 5], method="ffill", limit=1)
        expected = DataFrame(exp_data)
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "idx, check_index_type",
        [
            [["C", "B", "A"], True],
            [["F", "C", "A", "D"], True],
            [["A"], True],
            [["A", "B", "C"], True],
            [["C", "A", "B"], True],
            [["C", "B"], True],
            [["C", "A"], True],
            [["A", "B"], True],
            [["B", "A", "C"], True],
            # reindex by these causes different MultiIndex levels
            [["D", "F"], False],
            [["A", "C", "B"], False],
        ],
    )
    def test_reindex_level_verify_first_level(self, idx, check_index_type):
        df = DataFrame(
            {
                "jim": list("B" * 4 + "A" * 2 + "C" * 3),
                "joe": list("abcdeabcd")[::-1],
                "jolie": [10, 20, 30] * 3,
                "joline": np.random.default_rng(2).integers(0, 1000, 9),
            }
        )
        icol = ["jim", "joe", "jolie"]

        def f(val):
            return np.nonzero((df["jim"] == val).to_numpy())[0]

        i = np.concatenate(list(map(f, idx)))
        left = df.set_index(icol).reindex(idx, level="jim")
        right = df.iloc[i].set_index(icol)
        tm.assert_frame_equal(left, right, check_index_type=check_index_type)

    @pytest.mark.parametrize(
        "idx",
        [
            ("mid",),
            ("mid", "btm"),
            ("mid", "btm", "top"),
            ("mid",),
            ("mid", "top"),
            ("mid", "top", "btm"),
            ("btm",),
            ("btm", "mid"),
            ("btm", "mid", "top"),
            ("btm",),
            ("btm", "top"),
            ("btm", "top", "mid"),
            ("top",),
            ("top", "mid"),
            ("top", "mid", "btm"),
            ("top",),
            ("top", "btm"),
            ("top", "btm", "mid"),
        ],
    )
    def test_reindex_level_verify_first_level_repeats(self, idx):
        df = DataFrame(
            {
                "jim": ["mid"] * 5 + ["btm"] * 8 + ["top"] * 7,
                "joe": ["3rd"] * 2
                + ["1st"] * 3
                + ["2nd"] * 3
                + ["1st"] * 2
                + ["3rd"] * 3
                + ["1st"] * 2
                + ["3rd"] * 3
                + ["2nd"] * 2,
                # this needs to be jointly unique with jim and joe or
                # reindexing will fail ~1.5% of the time, this works
                # out to needing unique groups of same size as joe
                "jolie": np.concatenate(
                    [
                        np.random.default_rng(2).choice(1000, x, replace=False)
                        for x in [2, 3, 3, 2, 3, 2, 3, 2]
                    ]
                ),
                "joline": np.random.default_rng(2).standard_normal(20).round(3) * 10,
            }
        )
        icol = ["jim", "joe", "jolie"]

        def f(val):
            return np.nonzero((df["jim"] == val).to_numpy())[0]

        i = np.concatenate(list(map(f, idx)))
        left = df.set_index(icol).reindex(idx, level="jim")
        right = df.iloc[i].set_index(icol)
        tm.assert_frame_equal(left, right)

    @pytest.mark.parametrize(
        "idx, indexer",
        [
            [
                ["1st", "2nd", "3rd"],
                [2, 3, 4, 0, 1, 8, 9, 5, 6, 7, 10, 11, 12, 13, 14, 18, 19, 15, 16, 17],
            ],
            [
                ["3rd", "2nd", "1st"],
                [0, 1, 2, 3, 4, 10, 11, 12, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 13, 14],
            ],
            [["2nd", "3rd"], [0, 1, 5, 6, 7, 10, 11, 12, 18, 19, 15, 16, 17]],
            [["3rd", "1st"], [0, 1, 2, 3, 4, 10, 11, 12, 8, 9, 15, 16, 17, 13, 14]],
        ],
    )
    def test_reindex_level_verify_repeats(self, idx, indexer):
        df = DataFrame(
            {
                "jim": ["mid"] * 5 + ["btm"] * 8 + ["top"] * 7,
                "joe": ["3rd"] * 2
                + ["1st"] * 3
                + ["2nd"] * 3
                + ["1st"] * 2
                + ["3rd"] * 3
                + ["1st"] * 2
                + ["3rd"] * 3
                + ["2nd"] * 2,
                # this needs to be jointly unique with jim and joe or
                # reindexing will fail ~1.5% of the time, this works
                # out to needing unique groups of same size as joe
                "jolie": np.concatenate(
                    [
                        np.random.default_rng(2).choice(1000, x, replace=False)
                        for x in [2, 3, 3, 2, 3, 2, 3, 2]
                    ]
                ),
                "joline": np.random.default_rng(2).standard_normal(20).round(3) * 10,
            }
        )
        icol = ["jim", "joe", "jolie"]
        left = df.set_index(icol).reindex(idx, level="joe")
        right = df.iloc[indexer].set_index(icol)
        tm.assert_frame_equal(left, right)

    @pytest.mark.parametrize(
        "idx, indexer, check_index_type",
        [
            [list("abcde"), [3, 2, 1, 0, 5, 4, 8, 7, 6], True],
            [list("abcd"), [3, 2, 1, 0, 5, 8, 7, 6], True],
            [list("abc"), [3, 2, 1, 8, 7, 6], True],
            [list("eca"), [1, 3, 4, 6, 8], True],
            [list("edc"), [0, 1, 4, 5, 6], True],
            [list("eadbc"), [3, 0, 2, 1, 4, 5, 8, 7, 6], True],
            [list("edwq"), [0, 4, 5], True],
            [list("wq"), [], False],
        ],
    )
    def test_reindex_level_verify(self, idx, indexer, check_index_type):
        df = DataFrame(
            {
                "jim": list("B" * 4 + "A" * 2 + "C" * 3),
                "joe": list("abcdeabcd")[::-1],
                "jolie": [10, 20, 30] * 3,
                "joline": np.random.default_rng(2).integers(0, 1000, 9),
            }
        )
        icol = ["jim", "joe", "jolie"]
        left = df.set_index(icol).reindex(idx, level="joe")
        right = df.iloc[indexer].set_index(icol)
        tm.assert_frame_equal(left, right, check_index_type=check_index_type)

    def test_non_monotonic_reindex_methods(self):
        dr = date_range("2013-08-01", periods=6, freq="B")
        data = np.random.default_rng(2).standard_normal((6, 1))
        df = DataFrame(data, index=dr, columns=list("A"))
        df_rev = DataFrame(data, index=dr[[3, 4, 5] + [0, 1, 2]], columns=list("A"))
        # index is not monotonic increasing or decreasing
        msg = "index must be monotonic increasing or decreasing"
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="pad")
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="ffill")
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="bfill")
        with pytest.raises(ValueError, match=msg):
            df_rev.reindex(df.index, method="nearest")

    def test_reindex_sparse(self):
        # https://github.com/pandas-dev/pandas/issues/35286
        df = DataFrame(
            {"A": [0, 1], "B": pd.array([0, 1], dtype=pd.SparseDtype("int64", 0))}
        )
        result = df.reindex([0, 2])
        expected = DataFrame(
            {
                "A": [0.0, np.nan],
                "B": pd.array([0.0, np.nan], dtype=pd.SparseDtype("float64", 0.0)),
            },
            index=[0, 2],
        )
        tm.assert_frame_equal(result, expected)

    def test_reindex(self, float_frame, using_copy_on_write):
        datetime_series = Series(
            np.arange(30, dtype=np.float64), index=date_range("2020-01-01", periods=30)
        )

        newFrame = float_frame.reindex(datetime_series.index)

        for col in newFrame.columns:
            for idx, val in newFrame[col].items():
                if idx in float_frame.index:
                    if np.isnan(val):
                        assert np.isnan(float_frame[col][idx])
                    else:
                        assert val == float_frame[col][idx]
                else:
                    assert np.isnan(val)

        for col, series in newFrame.items():
            tm.assert_index_equal(series.index, newFrame.index)
        emptyFrame = float_frame.reindex(Index([]))
        assert len(emptyFrame.index) == 0

        # Cython code should be unit-tested directly
        nonContigFrame = float_frame.reindex(datetime_series.index[::2])

        for col in nonContigFrame.columns:
            for idx, val in nonContigFrame[col].items():
                if idx in float_frame.index:
                    if np.isnan(val):
                        assert np.isnan(float_frame[col][idx])
                    else:
                        assert val == float_frame[col][idx]
                else:
                    assert np.isnan(val)

        for col, series in nonContigFrame.items():
            tm.assert_index_equal(series.index, nonContigFrame.index)

        # corner cases

        # Same index, copies values but not index if copy=False
        newFrame = float_frame.reindex(float_frame.index, copy=False)
        if using_copy_on_write:
            assert newFrame.index.is_(float_frame.index)
        else:
            assert newFrame.index is float_frame.index

        # length zero
        newFrame = float_frame.reindex([])
        assert newFrame.empty
        assert len(newFrame.columns) == len(float_frame.columns)

        # length zero with columns reindexed with non-empty index
        newFrame = float_frame.reindex([])
        newFrame = newFrame.reindex(float_frame.index)
        assert len(newFrame.index) == len(float_frame.index)
        assert len(newFrame.columns) == len(float_frame.columns)

        # pass non-Index
        newFrame = float_frame.reindex(list(datetime_series.index))
        expected = datetime_series.index._with_freq(None)
        tm.assert_index_equal(newFrame.index, expected)

        # copy with no axes
        result = float_frame.reindex()
        tm.assert_frame_equal(result, float_frame)
        assert result is not float_frame

    def test_reindex_nan(self):
        df = DataFrame(
            [[1, 2], [3, 5], [7, 11], [9, 23]],
            index=[2, np.nan, 1, 5],
            columns=["joe", "jim"],
        )

        i, j = [np.nan, 5, 5, np.nan, 1, 2, np.nan], [1, 3, 3, 1, 2, 0, 1]
        tm.assert_frame_equal(df.reindex(i), df.iloc[j])

        df.index = df.index.astype("object")
        tm.assert_frame_equal(df.reindex(i), df.iloc[j], check_index_type=False)

        # GH10388
        df = DataFrame(
            {
                "other": ["a", "b", np.nan, "c"],
                "date": ["2015-03-22", np.nan, "2012-01-08", np.nan],
                "amount": [2, 3, 4, 5],
            }
        )

        df["date"] = pd.to_datetime(df.date)
        df["delta"] = (pd.to_datetime("2015-06-18") - df["date"]).shift(1)

        left = df.set_index(["delta", "other", "date"]).reset_index()
        right = df.reindex(columns=["delta", "other", "date", "amount"])
        tm.assert_frame_equal(left, right)

    def test_reindex_name_remains(self):
        s = Series(np.random.default_rng(2).random(10))
        df = DataFrame(s, index=np.arange(len(s)))
        i = Series(np.arange(10), name="iname")

        df = df.reindex(i)
        assert df.index.name == "iname"

        df = df.reindex(Index(np.arange(10), name="tmpname"))
        assert df.index.name == "tmpname"

        s = Series(np.random.default_rng(2).random(10))
        df = DataFrame(s.T, index=np.arange(len(s)))
        i = Series(np.arange(10), name="iname")
        df = df.reindex(columns=i)
        assert df.columns.name == "iname"

    def test_reindex_int(self, int_frame):
        smaller = int_frame.reindex(int_frame.index[::2])

        assert smaller["A"].dtype == np.int64

        bigger = smaller.reindex(int_frame.index)
        assert bigger["A"].dtype == np.float64

        smaller = int_frame.reindex(columns=["A", "B"])
        assert smaller["A"].dtype == np.int64

    def test_reindex_columns(self, float_frame):
        new_frame = float_frame.reindex(columns=["A", "B", "E"])

        tm.assert_series_equal(new_frame["B"], float_frame["B"])
        assert np.isnan(new_frame["E"]).all()
        assert "C" not in new_frame

        # Length zero
        new_frame = float_frame.reindex(columns=[])
        assert new_frame.empty

    def test_reindex_columns_method(self):
        # GH 14992, reindexing over columns ignored method
        df = DataFrame(
            data=[[11, 12, 13], [21, 22, 23], [31, 32, 33]],
            index=[1, 2, 4],
            columns=[1, 2, 4],
            dtype=float,
        )

        # default method
        result = df.reindex(columns=range(6))
        expected = DataFrame(
            data=[
                [np.nan, 11, 12, np.nan, 13, np.nan],
                [np.nan, 21, 22, np.nan, 23, np.nan],
                [np.nan, 31, 32, np.nan, 33, np.nan],
            ],
            index=[1, 2, 4],
            columns=range(6),
            dtype=float,
        )
        tm.assert_frame_equal(result, expected)

        # method='ffill'
        result = df.reindex(columns=range(6), method="ffill")
        expected = DataFrame(
            data=[
                [np.nan, 11, 12, 12, 13, 13],
                [np.nan, 21, 22, 22, 23, 23],
                [np.nan, 31, 32, 32, 33, 33],
            ],
            index=[1, 2, 4],
            columns=range(6),
            dtype=float,
        )
        tm.assert_frame_equal(result, expected)

        # method='bfill'
        result = df.reindex(columns=range(6), method="bfill")
        expected = DataFrame(
            data=[
                [11, 11, 12, 13, 13, np.nan],
                [21, 21, 22, 23, 23, np.nan],
                [31, 31, 32, 33, 33, np.nan],
            ],
            index=[1, 2, 4],
            columns=range(6),
            dtype=float,
        )
        tm.assert_frame_equal(result, expected)

    def test_reindex_axes(self):
        # GH 3317, reindexing by both axes loses freq of the index
        df = DataFrame(
            np.ones((3, 3)),
            index=[datetime(2012, 1, 1), datetime(2012, 1, 2), datetime(2012, 1, 3)],
            columns=["a", "b", "c"],
        )
        time_freq = date_range("2012-01-01", "2012-01-03", freq="d")
        some_cols = ["a", "b"]

        index_freq = df.reindex(index=time_freq).index.freq
        both_freq = df.reindex(index=time_freq, columns=some_cols).index.freq
        seq_freq = df.reindex(index=time_freq).reindex(columns=some_cols).index.freq
        assert index_freq == both_freq
        assert index_freq == seq_freq

    def test_reindex_fill_value(self):
        df = DataFrame(np.random.default_rng(2).standard_normal((10, 4)))

        # axis=0
        result = df.reindex(list(range(15)))
        assert np.isnan(result.values[-5:]).all()

        result = df.reindex(range(15), fill_value=0)
        expected = df.reindex(range(15)).fillna(0)
        tm.assert_frame_equal(result, expected)

        # axis=1
        result = df.reindex(columns=range(5), fill_value=0.0)
        expected = df.copy()
        expected[4] = 0.0
        tm.assert_frame_equal(result, expected)

        result = df.reindex(columns=range(5), fill_value=0)
        expected = df.copy()
        expected[4] = 0
        tm.assert_frame_equal(result, expected)

        result = df.reindex(columns=range(5), fill_value="foo")
        expected = df.copy()
        expected[4] = "foo"
        tm.assert_frame_equal(result, expected)

        # other dtypes
        df["foo"] = "foo"
        result = df.reindex(range(15), fill_value="0")
        expected = df.reindex(range(15)).fillna("0")
        tm.assert_frame_equal(result, expected)

    def test_reindex_uint_dtypes_fill_value(self, any_unsigned_int_numpy_dtype):
        # GH#48184
        df = DataFrame({"a": [1, 2], "b": [1, 2]}, dtype=any_unsigned_int_numpy_dtype)
        result = df.reindex(columns=list("abcd"), index=[0, 1, 2, 3], fill_value=10)
        expected = DataFrame(
            {"a": [1, 2, 10, 10], "b": [1, 2, 10, 10], "c": 10, "d": 10},
            dtype=any_unsigned_int_numpy_dtype,
        )
        tm.assert_frame_equal(result, expected)

    def test_reindex_single_column_ea_index_and_columns(self, any_numeric_ea_dtype):
        # GH#48190
        df = DataFrame({"a": [1, 2]}, dtype=any_numeric_ea_dtype)
        result = df.reindex(columns=list("ab"), index=[0, 1, 2], fill_value=10)
        expected = DataFrame(
            {"a": Series([1, 2, 10], dtype=any_numeric_ea_dtype), "b": 10}
        )
        tm.assert_frame_equal(result, expected)

    def test_reindex_dups(self):
        # GH4746, reindex on duplicate index error messages
        arr = np.random.default_rng(2).standard_normal(10)
        df = DataFrame(arr, index=[1, 2, 3, 4, 5, 1, 2, 3, 4, 5])

        # set index is ok
        result = df.copy()
        result.index = list(range(len(df)))
        expected = DataFrame(arr, index=list(range(len(df))))
        tm.assert_frame_equal(result, expected)

        # reindex fails
        msg = "cannot reindex on an axis with duplicate labels"
        with pytest.raises(ValueError, match=msg):
            df.reindex(index=list(range(len(df))))

    def test_reindex_with_duplicate_columns(self):
        # reindex is invalid!
        df = DataFrame(
            [[1, 5, 7.0], [1, 5, 7.0], [1, 5, 7.0]], columns=["bar", "a", "a"]
        )
        msg = "cannot reindex on an axis with duplicate labels"
        with pytest.raises(ValueError, match=msg):
            df.reindex(columns=["bar"])
        with pytest.raises(ValueError, match=msg):
            df.reindex(columns=["bar", "foo"])

    def test_reindex_axis_style(self):
        # https://github.com/pandas-dev/pandas/issues/12392
        df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
        expected = DataFrame(
            {"A": [1, 2, np.nan], "B": [4, 5, np.nan]}, index=[0, 1, 3]
        )
        result = df.reindex([0, 1, 3])
        tm.assert_frame_equal(result, expected)

        result = df.reindex([0, 1, 3], axis=0)
        tm.assert_frame_equal(result, expected)

        result = df.reindex([0, 1, 3], axis="index")
        tm.assert_frame_equal(result, expected)

    def test_reindex_positional_raises(self):
        # https://github.com/pandas-dev/pandas/issues/12392
        # Enforced in 2.0
        df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
        msg = r"reindex\(\) takes from 1 to 2 positional arguments but 3 were given"
        with pytest.raises(TypeError, match=msg):
            df.reindex([0, 1], ["A", "B", "C"])

    def test_reindex_axis_style_raises(self):
        # https://github.com/pandas-dev/pandas/issues/12392
        df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]})
        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex([0, 1], columns=["A"], axis=1)

        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex([0, 1], columns=["A"], axis="index")

        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex(index=[0, 1], axis="index")

        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex(index=[0, 1], axis="columns")

        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex(columns=[0, 1], axis="columns")

        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex(index=[0, 1], columns=[0, 1], axis="columns")

        with pytest.raises(TypeError, match="Cannot specify all"):
            df.reindex(labels=[0, 1], index=[0], columns=["A"])

        # Mixing styles
        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex(index=[0, 1], axis="index")

        with pytest.raises(TypeError, match="Cannot specify both 'axis'"):
            df.reindex(index=[0, 1], axis="columns")

        # Duplicates
        with pytest.raises(TypeError, match="multiple values"):
            df.reindex([0, 1], labels=[0, 1])

    def test_reindex_single_named_indexer(self):
        # https://github.com/pandas-dev/pandas/issues/12392
        df = DataFrame({"A": [1, 2, 3], "B": [1, 2, 3]})
        result = df.reindex([0, 1], columns=["A"])
        expected = DataFrame({"A": [1, 2]})
        tm.assert_frame_equal(result, expected)

    def test_reindex_api_equivalence(self):
        # https://github.com/pandas-dev/pandas/issues/12392
        # equivalence of the labels/axis and index/columns API's
        df = DataFrame(
            [[1, 2, 3], [3, 4, 5], [5, 6, 7]],
            index=["a", "b", "c"],
            columns=["d", "e", "f"],
        )

        res1 = df.reindex(["b", "a"])
        res2 = df.reindex(index=["b", "a"])
        res3 = df.reindex(labels=["b", "a"])
        res4 = df.reindex(labels=["b", "a"], axis=0)
        res5 = df.reindex(["b", "a"], axis=0)
        for res in [res2, res3, res4, res5]:
            tm.assert_frame_equal(res1, res)

        res1 = df.reindex(columns=["e", "d"])
        res2 = df.reindex(["e", "d"], axis=1)
        res3 = df.reindex(labels=["e", "d"], axis=1)
        for res in [res2, res3]:
            tm.assert_frame_equal(res1, res)

        res1 = df.reindex(index=["b", "a"], columns=["e", "d"])
        res2 = df.reindex(columns=["e", "d"], index=["b", "a"])
        res3 = df.reindex(labels=["b", "a"], axis=0).reindex(labels=["e", "d"], axis=1)
        for res in [res2, res3]:
            tm.assert_frame_equal(res1, res)

    def test_reindex_boolean(self):
        frame = DataFrame(
            np.ones((10, 2), dtype=bool), index=np.arange(0, 20, 2), columns=[0, 2]
        )

        reindexed = frame.reindex(np.arange(10))
        assert reindexed.values.dtype == np.object_
        assert isna(reindexed[0][1])

        reindexed = frame.reindex(columns=range(3))
        assert reindexed.values.dtype == np.object_
        assert isna(reindexed[1]).all()

    def test_reindex_objects(self, float_string_frame):
        reindexed = float_string_frame.reindex(columns=["foo", "A", "B"])
        assert "foo" in reindexed

        reindexed = float_string_frame.reindex(columns=["A", "B"])
        assert "foo" not in reindexed

    def test_reindex_corner(self, int_frame):
        index = Index(["a", "b", "c"])
        dm = DataFrame({}).reindex(index=[1, 2, 3])
        reindexed = dm.reindex(columns=index)
        tm.assert_index_equal(reindexed.columns, index)

        # ints are weird
        smaller = int_frame.reindex(columns=["A", "B", "E"])
        assert smaller["E"].dtype == np.float64

    def test_reindex_with_nans(self):
        df = DataFrame(
            [[1, 2], [3, 4], [np.nan, np.nan], [7, 8], [9, 10]],
            columns=["a", "b"],
            index=[100.0, 101.0, np.nan, 102.0, 103.0],
        )

        result = df.reindex(index=[101.0, 102.0, 103.0])
        expected = df.iloc[[1, 3, 4]]
        tm.assert_frame_equal(result, expected)

        result = df.reindex(index=[103.0])
        expected = df.iloc[[4]]
        tm.assert_frame_equal(result, expected)

        result = df.reindex(index=[101.0])
        expected = df.iloc[[1]]
        tm.assert_frame_equal(result, expected)

    def test_reindex_multi(self):
        df = DataFrame(np.random.default_rng(2).standard_normal((3, 3)))

        result = df.reindex(index=range(4), columns=range(4))
        expected = df.reindex(list(range(4))).reindex(columns=range(4))

        tm.assert_frame_equal(result, expected)

        df = DataFrame(np.random.default_rng(2).integers(0, 10, (3, 3)))

        result = df.reindex(index=range(4), columns=range(4))
        expected = df.reindex(list(range(4))).reindex(columns=range(4))

        tm.assert_frame_equal(result, expected)

        df = DataFrame(np.random.default_rng(2).integers(0, 10, (3, 3)))

        result = df.reindex(index=range(2), columns=range(2))
        expected = df.reindex(range(2)).reindex(columns=range(2))

        tm.assert_frame_equal(result, expected)

        df = DataFrame(
            np.random.default_rng(2).standard_normal((5, 3)) + 1j,
            columns=["a", "b", "c"],
        )

        result = df.reindex(index=[0, 1], columns=["a", "b"])
        expected = df.reindex([0, 1]).reindex(columns=["a", "b"])

        tm.assert_frame_equal(result, expected)

    def test_reindex_multi_categorical_time(self):
        # https://github.com/pandas-dev/pandas/issues/21390
        midx = MultiIndex.from_product(
            [
                Categorical(["a", "b", "c"]),
                Categorical(date_range("2012-01-01", periods=3, freq="h")),
            ]
        )
        df = DataFrame({"a": range(len(midx))}, index=midx)
        df2 = df.iloc[[0, 1, 2, 3, 4, 5, 6, 8]]

        result = df2.reindex(midx)
        expected = DataFrame({"a": [0, 1, 2, 3, 4, 5, 6, np.nan, 8]}, index=midx)
        tm.assert_frame_equal(result, expected)

    def test_reindex_with_categoricalindex(self):
        df = DataFrame(
            {
                "A": np.arange(3, dtype="int64"),
            },
            index=CategoricalIndex(
                list("abc"), dtype=CategoricalDtype(list("cabe")), name="B"
            ),
        )

        # reindexing
        # convert to a regular index
        result = df.reindex(["a", "b", "e"])
        expected = DataFrame({"A": [0, 1, np.nan], "B": Series(list("abe"))}).set_index(
            "B"
        )
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(["a", "b"])
        expected = DataFrame({"A": [0, 1], "B": Series(list("ab"))}).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(["e"])
        expected = DataFrame({"A": [np.nan], "B": Series(["e"])}).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(["d"])
        expected = DataFrame({"A": [np.nan], "B": Series(["d"])}).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        # since we are actually reindexing with a Categorical
        # then return a Categorical
        cats = list("cabe")

        result = df.reindex(Categorical(["a", "e"], categories=cats))
        expected = DataFrame(
            {"A": [0, np.nan], "B": Series(list("ae")).astype(CategoricalDtype(cats))}
        ).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(Categorical(["a"], categories=cats))
        expected = DataFrame(
            {"A": [0], "B": Series(list("a")).astype(CategoricalDtype(cats))}
        ).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(["a", "b", "e"])
        expected = DataFrame({"A": [0, 1, np.nan], "B": Series(list("abe"))}).set_index(
            "B"
        )
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(["a", "b"])
        expected = DataFrame({"A": [0, 1], "B": Series(list("ab"))}).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(["e"])
        expected = DataFrame({"A": [np.nan], "B": Series(["e"])}).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        # give back the type of categorical that we received
        result = df.reindex(Categorical(["a", "e"], categories=cats, ordered=True))
        expected = DataFrame(
            {
                "A": [0, np.nan],
                "B": Series(list("ae")).astype(CategoricalDtype(cats, ordered=True)),
            }
        ).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        result = df.reindex(Categorical(["a", "d"], categories=["a", "d"]))
        expected = DataFrame(
            {
                "A": [0, np.nan],
                "B": Series(list("ad")).astype(CategoricalDtype(["a", "d"])),
            }
        ).set_index("B")
        tm.assert_frame_equal(result, expected, check_index_type=True)

        df2 = DataFrame(
            {
                "A": np.arange(6, dtype="int64"),
            },
            index=CategoricalIndex(
                list("aabbca"), dtype=CategoricalDtype(list("cabe")), name="B"
            ),
        )
        # passed duplicate indexers are not allowed
        msg = "cannot reindex on an axis with duplicate labels"
        with pytest.raises(ValueError, match=msg):
            df2.reindex(["a", "b"])

        # args NotImplemented ATM
        msg = r"argument {} is not implemented for CategoricalIndex\.reindex"
        with pytest.raises(NotImplementedError, match=msg.format("method")):
            df.reindex(["a"], method="ffill")
        with pytest.raises(NotImplementedError, match=msg.format("level")):
            df.reindex(["a"], level=1)
        with pytest.raises(NotImplementedError, match=msg.format("limit")):
            df.reindex(["a"], limit=2)

    def test_reindex_signature(self):
        sig = inspect.signature(DataFrame.reindex)
        parameters = set(sig.parameters)
        assert parameters == {
            "self",
            "labels",
            "index",
            "columns",
            "axis",
            "limit",
            "copy",
            "level",
            "method",
            "fill_value",
            "tolerance",
        }

    def test_reindex_multiindex_ffill_added_rows(self):
        # GH#23693
        # reindex added rows with nan values even when fill method was specified
        mi = MultiIndex.from_tuples([("a", "b"), ("d", "e")])
        df = DataFrame([[0, 7], [3, 4]], index=mi, columns=["x", "y"])
        mi2 = MultiIndex.from_tuples([("a", "b"), ("d", "e"), ("h", "i")])
        result = df.reindex(mi2, axis=0, method="ffill")
        expected = DataFrame([[0, 7], [3, 4], [3, 4]], index=mi2, columns=["x", "y"])
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "kwargs",
        [
            {"method": "pad", "tolerance": timedelta(seconds=9)},
            {"method": "backfill", "tolerance": timedelta(seconds=9)},
            {"method": "nearest"},
            {"method": None},
        ],
    )
    def test_reindex_empty_frame(self, kwargs):
        # GH#27315
        idx = date_range(start="2020", freq="30s", periods=3)
        df = DataFrame([], index=Index([], name="time"), columns=["a"])
        result = df.reindex(idx, **kwargs)
        expected = DataFrame({"a": [np.nan] * 3}, index=idx, dtype=object)
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize(
        "src_idx",
        [
            Index([]),
            CategoricalIndex([]),
        ],
    )
    @pytest.mark.parametrize(
        "cat_idx",
        [
            # No duplicates
            Index([]),
            CategoricalIndex([]),
            Index(["A", "B"]),
            CategoricalIndex(["A", "B"]),
            # Duplicates: GH#38906
            Index(["A", "A"]),
            CategoricalIndex(["A", "A"]),
        ],
    )
    def test_reindex_empty(self, src_idx, cat_idx):
        df = DataFrame(columns=src_idx, index=["K"], dtype="f8")

        result = df.reindex(columns=cat_idx)
        expected = DataFrame(index=["K"], columns=cat_idx, dtype="f8")
        tm.assert_frame_equal(result, expected)

    @pytest.mark.parametrize("dtype", ["m8[ns]", "M8[ns]"])
    def test_reindex_datetimelike_to_object(self, dtype):
        # GH#39755 dont cast dt64/td64 to ints
        mi = MultiIndex.from_product([list("ABCDE"), range(2)])

        dti = date_range("2016-01-01", periods=10)
        fv = np.timedelta64("NaT", "ns")
        if dtype == "m8[ns]":
            dti = dti - dti[0]
            fv = np.datetime64("NaT", "ns")

        ser = Series(dti, index=mi)
        ser[::3] = pd.NaT

        df = ser.unstack()

        index = df.index.append(Index([1]))
        columns = df.columns.append(Index(["foo"]))

        res = df.reindex(index=index, columns=columns, fill_value=fv)

        expected = DataFrame(
            {
                0: df[0].tolist() + [fv],
                1: df[1].tolist() + [fv],
                "foo": np.array(["NaT"] * 6, dtype=fv.dtype),
            },
            index=index,
        )
        assert (res.dtypes[[0, 1]] == object).all()
        assert res.iloc[0, 0] is pd.NaT
        assert res.iloc[-1, 0] is fv
        assert res.iloc[-1, 1] is fv
        tm.assert_frame_equal(res, expected)

    @pytest.mark.parametrize(
        "index_df,index_res,index_exp",
        [
            (
                CategoricalIndex([], categories=["A"]),
                Index(["A"]),
                Index(["A"]),
            ),
            (
                CategoricalIndex([], categories=["A"]),
                Index(["B"]),
                Index(["B"]),
            ),
            (
                CategoricalIndex([], categories=["A"]),
                CategoricalIndex(["A"]),
                CategoricalIndex(["A"]),
            ),
            (
                CategoricalIndex([], categories=["A"]),
                CategoricalIndex(["B"]),
                CategoricalIndex(["B"]),
            ),
        ],
    )
    def test_reindex_not_category(self, index_df, index_res, index_exp):
        # GH#28690
        df = DataFrame(index=index_df)
        result = df.reindex(index=index_res)
        expected = DataFrame(index=index_exp)
        tm.assert_frame_equal(result, expected)

    def test_invalid_method(self):
        df = DataFrame({"A": [1, np.nan, 2]})

        msg = "Invalid fill method"
        with pytest.raises(ValueError, match=msg):
            df.reindex([1, 0, 2], method="asfreq")
</pre></body></html>